CSE140: Components and Design Techniques for Digital Systems

Introduction

Prof. Tajana Simunic Rosing

Welcome to CSE 140!

- Instructor: Tajana Simunic Rosing
- Email: tajana@ucsd.edu; please put CSE140 in the subject line
- Office Hours: T 3:30-4:30pm, Th 12:45-1:45pm; CSE 2118
- Instructor's Assistant: Sheila Manalo
- Email: shmanalo@ucsd.edu
- Phone: (858) 534-8873
- Discussion session: F 4:00-4:50am, CENTR 119
- TAs: (office hrs and emails to be updated at course website shortly)

Lu, Jingwei jlu@cs.ucsd.edu; Th 10-11am, Sunday 7-8pm
Mast, Ryan Andrew rmast@ucsd.edu; Wed 4-5pm, B250
Nath, Rajib Kumar rknath@ucsd.edu; Tu 11am-12pm
Supanekar, Ketan Pranav ksupanek@eng.ucsd.edu ; Mon 7-8pm

- Class Website:
- http://www.cse.ucsd.edu/classes/sp13/cse140-a/
- Grades: http://ted.ucsd.edu

Course Description

- Prerequisites:
- CSE 20 or Math 15A, and CSE 30.
- CSE 140L must be taken concurrently
- Objective:
- Introduce digital components and system design concepts
- Grading
- Homeworks (~7): 10\%
- HW picked up at beginning of the class, ZERO pts if late
- Three exams: \#1-25\%; \#2-30\%; \#3-35\%
- No makeup exams; exceptions only for:
- documented illness (signed doctor's statement), death in the family
- Third exam will occur at the final time, but will be the same length as the other midterms, so you will have 1 hr 20 min to complete it
- Regrade requests:
- turn in a written request at the end of the class where your work (HW or exam) is returned

Textbook and Recommended Readings

- Required textbook:
- Digital Design \& Computer Architecture, $2^{\text {nd }}$ Edition by David \& Sarah Harris
- Recommended textbook:
- Digital Design by F. Vahid, \& Contemporary Logic Design by R. Katz \& G. Borriello
- Lecture slides are derived from the slides designed for all three books

Why Study Digital Design?

- Look "under the hood" of computers
- Become a better programmer when aware of hardware resource issues
- Everyday devices becoming digital
- Enables:
- Better devices: Better sound recorders, cameras, cars, cell phones, medical devices,...
- New devices: Video games, PDAs, ...
- Known as "embedded systems"
- Thousands of new devices every year
- Designers needed: Potential career

Satellites		$\begin{aligned} & \text { DVD } \\ & \text { players } \end{aligned}$	Video recorders		Musical instruments	
music players	Cell phones		Cameras		TVs	???
19951997	1999	2001	2003	2005	2007	

When Microprocessors Aren't Good Enough

Execution time

- With microprocessors so easy to work with, cheap, and available, why design a digital circuit?
- Microprocessor may be too slow
- Or too big, power hungry, or costly

Sample digital camera task execution times (in seconds) on a microprocessor versus a digital circuit:

Task	Microprocessor	Custom Digital Circuit
Read	5	0.1
Compress	8	0.5
Store	1	0.8

(b)

(c)

The big picture

- We start with Boolean algebra $\mathrm{Y}=\mathrm{A}$ and B
- We end with a hardware design of a simple CPU

- What's next? CSE141 - more complex CPU architecture ${ }_{7}$

Outline

- Number representations
- Analog vs. Digital
- Digital representations:
- Binary, Hexadecimal, Octal
- Binary addition, subtraction, multiplication, division
- Boolean algebra
- Properties
- How Boolean algebra can be used to design logic circuits
- Switches, MOS transistors, Logic gates
- What is a switch
- How a transistor operates
- Building logic gates out of transistors
- Building larger functions from logic gates
$>$ Textbook chapter 1

CSE140: Components and Design Techniques for Digital Systems

Number representations \&
Binary arithmetic
Tajana Simunic Rosing

What Does "Digital" Mean?

- Analog signal
- Infinite possible values Itage on a wire d by microphone

Sound waves

Possible values:

- Digital signal
- Finite possible values
- Ex: button pressed on a keypad

How Do We Encode Data into Binary?

A/D conversion \& digitization benefits

- Analog signal (e.g., audio) may lose quality
- Voltage levels not saved/copied/transmitted perfectly
- Digitized version enables near-perfect save/cpy/trn.
- "Sample" voltage at particular rate, save sample using bit encoding
- Voltage levels still not kept perfectly
- But we can distinguish Os from 1s

Let bit encoding be:
1 V: "01"
2 V: "10"
3 V : "11"

How fix -- higher, lower, ?

Can fix -- easily distinguish 0 s

Encoding Text: ASCII, Unicode

- ASCII: 7- (or 8-) bit encoding of each letter, number, or symbol
- Unicode: Increasingly popular 16-bit bit encoding
- Encodes characters from various world languages

Symbol	Encoding
R	1010010
S	1010011
T	1010100
L	1001100
N	1001110
E	1000101
O	0110000
Ctab>	0101110
<to01001	

Symbol	Encoding
r	1110010
s	1110011
t	1110100
l	1101100
n	1101110
e	1100101
g	011001
l	0100001
<space>	0100000

What does this ASCII bit sequence represent? 1010010100010110100111010100

Encoding Numbers

- Each position represents a quantity; symbol in position means how many of that quantity
- Base ten (decimal)
- Ten symbols: $0,1,2, \ldots, 8$, and 9
- More than 9 -- next position
- So each position power of 10
- Nothing special about base 10 -used because we have 10 fingers
- Base two (binary)
- Two symbols: 0 and 1
- More than 1 -- next position
- So each position power of 2

Bases Sixteen \& Eight

- Base sixteen
- nice because each position represents four base two positions
- Used as compact means to write binary numbers
- Basic digits: 0-9, A-F
- Known as hexadecimal, or just hex
- Base eight
- Used in some digital designs
- Each position represents three base two positions
- Basic digits: 0-7

Write 11110000 in hex

Write 11110000 in octal

Sign and magnitude

- One bit dedicate to sign (positive or negative)
- sign: $0=$ positive (or zero), $1=$ negative
- Rest represent the absolute value or magnitude
- three low order bits: 0 (000) thru 7 (111)
- Range for n bits
- +/-2n-1-1 (two representations for 0)
- Cumbersome addition/subtraction
- must compare magnitudes to determine the sign of the result

2s complement

- If N is a positive number, then the negative of N (its $2 s$ complement or N^{*}) is bit-wise complement plus 1
- 7^{*} is -7: 0111 -> $1000+1=1001(-7)$
-7^{*} is $7: 1001->0110+1=0111$ (7)

2s complement addition and subtraction

Detecting Overflow: Method 1

- Assuming 4-bit two's complement numbers, one can detect overflow by detecting when the two numbers' sign bits are the same but are different from the result's sign bit
- If the two numbers' sign bits are different, overflow is impossible
- Adding a positive and negative can't exceed the largest magnitude positive or negative
- Simple circuit
- overflow = a3'b3's3 + a3b3s3'

If the numbers' sign bits have the same value, which differs from the result's sign bit, overflow has occurred.

Detecting Overflow: Method 2

- Even simpler method: Detect difference between carry-in to sign bit and carry-out from sign bit
- Yields a simpler circuit: overflow $=c 3$ xor $c 4=c 3$ c4' + c3' $c 4$

1	1	1		0	0			0	0	0	
0	1	1	1	1	1		1	1	0	0	0
+ 0	0	0	1	+ 1	0		0	+ 0	1	1	1
01	0	0	0	10111				$\begin{array}{llll} 01 & 1 & 1 \end{array}$			
overflow (a)				overflow				no overflow (c)			

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.

Multiplication of positive binary numbers

- Generalized representation of multiplication by hand

		x	$\begin{aligned} & \text { a3 } \\ & \text { b3 } \end{aligned}$	$\begin{aligned} & \mathrm{a} 2 \\ & \mathrm{~b} 2 \end{aligned}$	$\begin{aligned} & \text { a } 1 \\ & \text { b1 } \end{aligned}$	$\begin{aligned} & \text { a0 } \\ & \text { b0 } \end{aligned}$	
			b0a3	b0a2	b0a1	b0a0	(pp1)
		b1a3	b1a2	b1a1	b1a0	0	(pp2)
	b2a3	b2a2	b2a1	b2a0	0	0	(pp3)
+ b3a3	b3a2	b3a1	b3a0	0	0	0	(pp4)
p7 p6	p5	p4	p3	p2	p1	p0	

Division of positive binary numbers

- Repeated subtraction
- Set quotient to 0
- Repeat while dividend >= divisor
- Subtract divisor from dividend
- Add 1 to quotient
- When dividend < divisor:
- Reminder = dividend
- Quotient is correct

Example:

- Dividend: 101; Divisor: 10

Dividend	Quotient
$101-$	$0+$
10	1
$11-$	$1+$
10	1
1	10

Summary of number representation

- Conversion between basis
- Decimal
- Binary
- Octal
- Hex
- Addition \& subtraction in binary
- Overflow detection
- Multiplication
- Partial products
- For demo see:
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html
- Division
- Repeated subtraction
- For demo see:
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html

CSE140: Components and Design Techniques for Digital Systems

Boolean algebra

Tajana Simunic Rosing

Boolean algebra

- $B=\{0,1\}$
- Variables represent 0 or 1 only
- Operators return 0 or 1 only
- Basic operators
- - is logical AND: a AND b returns 1 only when both $a=1$ and $b=1$
- + is logical OR: a OR b returns 1 if either (or both) $a=1$ or $b=1$
- ' is logical NOT: NOT a returns the opposite of a (1 if $a=0,0$ if $a=1$)

$O R$			
$a+b$	a	b	$O R$
0	0	0	
0	1	1	
1	0	1	
1	1	1	

| NOT |
| :--- | :--- | :--- |
| So a, |\quad| a | NOT |
| :--- | :--- | :--- |
| 0 | 1 |
| 1 | 0 |

- Derived operators:

NAND

a	b	NAND
0	0	
0	1	
1	0	
1	1	

${ }^{\text {NOR }}$

a	b	NOR	XOR
0	0		
0	1		
1	0		
1	1		

a b	XOR	XNOR a b	XOR
00		00	
01		01	
10		10	
11		11	

Representations of Boolean Functions

Examples: Converting to Boolean Functions

- Convert the following English statements to a function
- Q1. answer is 1 if a is 1 and b is 1 .
- Answer: F =
- Q2. answer is 1 if either of a or b is 1 .
- Answer: F =
- Q3. answer is 1 if both a and b are not 0 .
- Answer: F=
- Q4. answer is 1 if a is 1 and b is 0 .
- Answer: F =

Example: Convert equation to logic gates

- More than one way to map expressions to gates

$$
\text { e.g., } Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(C+D)\right)\right)
$$

Boolean Duality

- Derived by replacing • by +, + by •, 0 by 1 , and 1 by 0 \& leaving variables unchanged

$$
X+Y+\ldots \Leftrightarrow X \cdot Y \bullet \ldots
$$

- Generalized duality:

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \cdot\right) \Leftrightarrow f\left(X_{1}, X_{2}, \ldots, X_{n}, 1,0, \cdot \cdot,+\right)
$$

- Any theorem that can be proven is also proven for its dual! Note: this is NOT deMorgan's Law

Boolean Axioms \& Theorems

	Axiom		Dual	Name
A1	$B=0$ if $B \neq 1$	A1 ${ }^{\prime}$	$B=1$ if $B \neq 0$	Binary field
A2	$\overline{0}=1$	A2 ${ }^{\prime}$	$\overline{1}=0$	NOT
A3	$0 \bullet 0=0$	A3 ${ }^{\prime}$	$1+1=1$	AND/OR
A4	$1 \bullet 1=1$	A4 $^{\prime}$	$0+0=0$	AND/OR
A5	$0 \bullet 1=1 \bullet 0=0$	A5 5^{\prime}	$1+0=0+1=1$	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1=B$	T1 ${ }^{\prime}$	$B+0=B$	Identity
T2	$B \bullet 0=0$	T2 $^{\prime}$	$B+1=1$	Null Element
T3	$B \bullet B=B$	T3 $^{\prime}$	$B+B=B$	Idempotency
T4		$\overline{\bar{B}}=B$		Involution
T5	$B \bullet \bar{B}=0$	T5		$B+\bar{B}=1$

Boolean theorems of multiple variables

	Theorem		Dual	Name
T6	$B \cdot \mathrm{C}=\mathrm{C} \cdot \mathrm{B}$	T6'	$B+C=C+B$	Commutativity
T7	$(B \cdot C) \cdot D=B \cdot(C \cdot D)$	T7 ${ }^{\prime}$	$(B+C)+D=B+(C+D)$	Associativity
T8	$(B \bullet C)+B \bullet D=B \bullet(C+D)$	T8 ${ }^{\prime}$	$(B+C) \bullet(B+D)=B+(C \bullet D)$	Distributivity
T9	$B \cdot(B+C)=B$	T9 ${ }^{\prime}$	$B+(B \bullet C)=B$	Covering
T10	$(B \cdot C)+(B \cdot \bar{C})=B$	T10'	$(B+C) \cdot(B+C)=B$	Combining
	$\begin{aligned} & (B \bullet C)+(B \bullet D)+(C \bullet D) \\ & =B \bullet C+B \bullet D \end{aligned}$	T11'	$\begin{aligned} & (B+C) \cdot(B+D) \cdot(C+D) \\ & =(B+C) \cdot(B+D) \end{aligned}$	Consensus
T12	$\begin{aligned} & B_{0} \bullet B_{1} \bullet B_{2} \cdots \\ & =\left(B_{0}+B_{1}+B_{2} \ldots\right) \end{aligned}$	T12'	$\begin{aligned} & B_{0}+B_{1}+B_{2} \cdots \\ & =\left(\overline{B_{0}} \cdot \overline{B_{1}} \cdot \overline{B_{2}}\right) \\ & \hline \end{aligned}$	De Morgan's Theorem

Proving theorems

- Using the axioms of Boolean algebra (or a truth table):
- e.g., prove the theorem:
$X \cdot Y+X \cdot Y^{\prime}=X$
distributivity
complementarity identity
- e.g., prove the theorem:
identity distributivity identity identity
$X \bullet Y+X \bullet Y^{\prime} \quad=X \bullet\left(Y+Y^{\prime}\right)$
$X \bullet\left(Y+Y^{\prime}\right) \quad=X \bullet(1)$
$X \bullet(1) \quad=X \vee$
$X+X \cdot Y=X$
$X+X \cdot Y \quad=X \cdot 1+X \cdot Y$
$X \cdot 1+X \cdot Y=X \cdot(1+Y)$
$X \bullet(1+Y) \quad=X \bullet(1)$
$X \bullet(1) \quad=X \checkmark$

Proving theorems example

- Prove the following using the laws of Boolean algebra:
$-(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)=X \cdot Y+X \cdot Z$
$(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)$
identity
$(X \cdot Y)+(1) \bullet(Y \bullet Z)+(X \cdot Z)$
complementarity
$(X \cdot Y)+\left(X^{\prime}+X\right) \cdot(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)$
distributivity
commutativity
factoring
$(X \cdot Y) \cdot(1+Z)+\left(X^{\prime} \cdot Z\right) \cdot(1+Y)$
null
$(X \cdot Y) \cdot(1)+\left(X^{\prime} \cdot Z\right) \bullet(1)$
identity
$(X \cdot Y)+\left(X^{\prime} \cdot Z\right) \checkmark$

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
- e.g., de Morgan's:

$$
(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}
$$

NOR is equivalent to AND with inputs complemented

$$
(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}
$$

NAND is equivalent to OR with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(\mathrm{X}+\mathrm{Y})^{\prime}$	$\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}$
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0		

X	Y	X^{\prime}	Y^{\prime}	$(\mathrm{X} \cdot \mathrm{Y})^{\prime}$	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}$
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0		

Completeness of NAND

- Any logic function can be implemented using just NAND gates. Why?
- Boolean algebra: need AND, OR and NOT

Implement using only NAND

- $F=X^{\prime} Y+Z$

Completeness of NOR

- Any logic function can be implemented using just NOR gates. Boolean algebra needs AND, OR and NOT

Implement using only NOR

- $F=X^{\prime} Y+Z$

Combinational circuit building blocks:
 Transistors, gates and timing

Tajana Simunic Rosing

Switches

- Electronic switches are the basis of binary digital circuits
- Electrical terminology
- Voltage: Difference in electric potential between two points
- Analogous to water pressure
- Current: Flow of charged particles
- Analogous to water flow
- Resistance: Tendency of wire to resist current flow
- Analogous to water pipe diameter

- $\mathrm{V}=\mathrm{I}$ * R (Ohm's Law)

The CMOS Switches

- CMOS circuit
- Consists of N and PMOS transistors
- Both N and PMOS are similar to basic switches
- Rp ~ $2 R n=>$ PMOS in series is much slower than NMOS

Silicon -- not quite a conductor or insulator:
Semiconductor

conducts

does not conduct

does not conduct

conducts

Transistor Circuit Design

- nMOS: pass 0's well, so connect source to GND
- pMOS: pass 1's well, so connect source to $V_{D D}$

CMOS Gates: NOT Gate

NOT

$$
\begin{gathered}
A-Y O-Y \\
Y=\bar{A} \\
A \\
\hline 0 \\
1
\end{gathered}
$$

CMOS Gates: NAND Gate

Three input NOR gate

CMOS gate structure:

Three-input NOR

Building a two-input AND gate

Transmission Gates

- nMOS pass 1's poorly
- pMOS pass 0's poorly
- Transmission gate is a better switch
- passes both 0 and 1 well
- When $E N=1$, the switch is $O N$:
- $E N=0$ and A is connected to B
- When $E N=0$, the switch is OFF:

- A is not connected to B

How to make CMOS gates

- Reducing Logic Functions
- fewest operations \Rightarrow fewest txs
- minimized function to eliminate txs
- Example: $x y+x z+x v=x(y+z+v)$

5 operations: $\quad 3$ operations:
3 AND, 2 OR 1 AND, 2 OR
\# txs =

- Suggested approach to implement a CMOS logic function
- create nMOS network
- invert output
- reduce function, use DeMorgan to eliminate NANDs and NORs
- implement using series for AND and parallel for OR
- create pMOS network
- complement each operation in nMOS network

CMOS Example

- Construct the function below in CMOS

$$
F=\overline{a+b \cdot(c+d)} ; \text { remember AND operations occur before OR }
$$

- Step 1, invert output and find nMOS
- nMOS; implement $a+b \cdot(c+d)$
- Group 1: c\&d in parallel
- Group 2: b in series with G1
- Group 3: a parallel to G2
- Step 2, complement operations
- pMOS
- Group 1: c \& d in series
- Group 2: b parallel to G1
- Group 3: a in series with G2

A CMOS design example

- Implement F and F^{\prime} using $C M O S: ~ F=A^{*}(B+C)$
- Function of:

- resistivity r, thickness t : defined by technology
- Width W, length L: defined by designer
- Approximate ON transistor with a resistor
- $R=r$ l/W
- L is usually minimum; change only W

$$
R=\frac{\rho L}{t W}=\frac{\rho}{t} \frac{L}{W}
$$

CMOS delay: capacitance \& timing estimates

- Capacitor
- Stores charge Q = C V (capacitance C; voltage V)
- Current: dQ/dt = C dV/dt
- Timing estimate
$-D t=C d V / i=C d V /\left(V / R_{\text {trans }}\right)=R_{\text {trans }} C d V / V$
- Delay: time to go from 50% to 50% of waveform

Charge/discharge in CMOS

- Calculate on resistance
- Calculate capacitance of the gates circuit is driving
- Get RC delay \& use it as an estimate of circuit delay

$$
-V_{\text {out }}=V_{\text {dd }}\left(1-e^{-t / R p C}\right)
$$

- Rp~2Rn

Timing analysis: Inverter

Timing analysis in gates

Power consumption in CMOS

- Power = Energy consumed per unit time
- Dynamic power consumption
- Static power consumption
- Dynamic power consumption:
- Power to charge transistor gate capacitances
- Energy required to charge a capacitance, C, to $V_{D D}$ is $C V_{D D}{ }^{2}$
- Circuit running at frequency f : transistors switch (from 1 to 0 or vice versa) at that frequency
- Capacitor is charged $f / 2$ times per second (discharging from 1 to 0 is free)

$$
P_{\text {dynamic }}=1 / 2 C V_{D D}^{2 f}
$$

- Static power consumption
- Power consumed when no gates are switching
- Caused by the leakage supply current, $I_{D D}$:

$$
P_{\text {static }}=I_{D D} V_{D D}
$$

Power estimate example

- Estimate the power consumption of a tablet PC

$$
\begin{aligned}
& -V_{D D}=1.2 \mathrm{~V} \\
& -C=20 \mathrm{nF} \\
& -f=1 \mathrm{GHz} \\
& -I_{D D}=20 \mathrm{~mA} \\
P= & 1 / 2 C V_{D D}^{2 f}+I_{D D} V_{D D} \\
= & 1 / 2(20 \mathrm{nF})(1.2 \mathrm{~V})^{2}(1 \mathrm{GHz})+ \\
& (20 \mathrm{~mA})(1.2 \mathrm{~V}) \\
= & 14.4 \mathrm{~W}
\end{aligned}
$$

Summary

- What we covered thus far:
- Number representations
- Boolean algebra
- Switches, Logic gates
- How to build logic gates from CMOS transistors
- Timing and power estimates
- What is next:
- Combinatorial logic:
- Minimization
- Implementations

